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The concept of “basic chemical models” is introduced, which is new from the 

standpoint of the physics of nonideal atomic plasma. This concept is based on the 

requirement of full conformity of the expression for free energy in the chemical 

model of plasma to exact asymptotic expansions obtained in the grand canonical 

ensemble within the physical model of plasma. The thermodynamic functions and 

equations of state and ionization equilibrium are obtained for three basic chemical 

models differing from one another by the choice of the atomic partition function. 

Comparison is made with the experimental results for nonideal plasma of cesium 

and inert gases. It is demonstrated that the best fit to experiment is shown by the 

results obtained using a basic chemical model with atomic partition function in the 

nearest neighbor approximation with classical determination of the size of excited 

atom.  

INTRODUCTION 

We will treat an atomic hydrogen-like plasma consisting of eN electrons, 

iN ions, and aN atoms and located in a volume V at a temperature T . The 

thermodynamic properties of such plasma may be described within both 

“chemical” (free electrons, ions, and atoms) [1] and “physical” (electrons and 

nuclei) [2-4] models of plasma. Assuming that the gas of atoms is ideal and that 

the free charges weakly interact with one another the free energy F of the system 

being treated will have the following form within the “chemical model”:  
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where kT1=β is the inverse temperature; ( ) 2/122 ll mβπλ h= is the thermal 

wavelength of a particle of the sort aiel ,,= ; aΣ , - is the internal atomic partition 

function; e - is the base of natural logarithm; and f∆ - is the correction to the free 

energy of an ideal-gas mixture in temperature units per particle, caused by the 

interaction of free electrons and ions with one another. Equation (1) describes a 

system of charges in a fairly wide range of pressures and temperatures from an 

ideal gas of atoms to fully ionized weakly nonideal plasma.  

The arbitrary choice of the quantities aΣ and f∆ leads to numerous 

versions of “chemical model” of plasma (1), while the “physical” model [2-4] is 

free of this indeterminacy. It follows from the literature that the problem of 

consistent description of the thermodynamic properties of nonideal plasma using 

physical and chemical models has existed in the physics of nonideal plasma until 

very recently [5].  

Without placing restrictions on the generality of further computations, we 

will assume that the dimensionless correction f∆ is a function of only the plasma 

parameter )(4 22
ie nnee +=Γ πββ ( ln denotes the concentrations of particles 

of the sort l ), and the atomic partition function depends symmetrically on the 

concentrations of free charges eiaiaea nnn ∂Σ∂=∂Σ∂=∂Σ∂ [1].  

An analytical expression relating the correction f∆ to the atomic partition 

function aΣ was derived in [1] within these assumptions,  
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is the Planck–Larkin partition function, and Ry is the ionization potential of 

hydrogen atom.  
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Relation (2) is derived as follows. Expression (1) for free energy is used to 

make a transition to the grand canonical ensemble and to derive the expression for 

the grand thermodynamic potential CMΩ , which corresponds to chemical model 

(1). We equate this expression to exact asymptotic expansion for the grand 

thermodynamic potential PMΩ , obtained within the physical model [2-4],  

CMΩ = PMΩ (4) 

change in relation (4) from activities to concentrations, which in fact implies the 

inverse transition to the small canonical ensemble, and calculate relation (2) which 

is written in the final form within terms of the order of 2Γ .

We suggest that the chemical models constructed using relation (2) should 

be referred to as “basic chemical models”. Their distinguishing feature is the exact 

conformity of expression (1) for free energy to the results obtained using the 

“physical model” for the grand thermodynamic potential [2-4]. As a result, it 

turned out possible to formulate, for the first time, the theoretical procedure for 

matching the calculation of the thermodynamic properties of weakly nonideal 

plasma within the physical and chemical models. It turns out that almost none of 

tens of chemical models employed in the literature is basic within our definition 

(2).  

We used the Planck–Larkin approximation (PLA) and the nearest neighbor 

approximation (NNA) for the calculation of the atomic partition function to derive 

relations for all thermodynamic functions and equations of state and ionization 

equilibrium. Comparison was made with the experimental results of [5] for cesium, 

argon, and xenon plasma.  

1. Thermodynamic functions of atomic plasma. We will use the standard 

thermodynamic relations  
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to derive, from Eq. (1),  
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and use the relation PVEH += to find  
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The concentrations of electrons, ions, and atoms are related by the Saha 

formula with the decrease in the ionization potential I∆ :
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Resultant relations (7–15) fully define the thermodynamics and the 

equations of state and ionization equilibrium of nonideal atomic plasma within 

chemical model (1). It follows from Eqs. (10–15) that, in order to perform concrete 

calculations, we must determine two quantities f∆ and aΣ . As is observed in [1], 

it is this double indeterminacy that eventually gives rise to tens of chemical models 

of nonideal atomic plasma [6].  
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Relation (2) markedly reduces this indeterminacy, because the quantities 

f∆ and aΣ turn out to be related to each other. In the case of basic chemical 

models, it is sufficient to select the atomic partition function, after which we can 

use Eq. (2) to obtain the correction to free energy and Eqs. (10–15) to obtain the 

remaining parameters.  

2. Basic chemical models of nonideal atomic plasma. When basic 

chemical models are used, two quantities are of fundamental importance, which are 

generally not treated in the traditional theory of nonideal plasma, namely:  

PLa Σ−Σ=∆Σ (16) 

and  

ei

a
a n

n
∂

Σ∂=∆Σ

ln
. (17) 

All thermodynamic corrections and the decrease in the ionization potential, 

which are given by Eqs. (2) and (10–15), are expressed in terms of these quantities. 

We will use two models for the atomic partition function in order to calculate these 

quantities. These models include, first of all, the Planck–Larkin approximation 

which is most frequently employed in the physics of nonideal plasma, because 

expression (3) arises during the calculation of the converging part of the second 

group coefficient within the physical model and, therefore, this coefficient is often 

assigned the meaning of the atomic partition function. The second model for the 

atomic partition function involves the use of the nearest neighbor approximation 

(NNA) to calculate effective populations. It is very popular with authors of 

astrophysical papers [7]; in our opinion, preference must be given to this latter 

model [1]. Within this model, we have, for the atomic partition function: 
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Here, kω is the Poisson probability of the absence of charged particles in the 

sphere corresponding to the size of atom in the state with the main quantum 

number k ,
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For further computations, we will examine two options for determining the 

size of atom, namely, quantum and classical ones, to which the values of δ = 1 and 

δ = 2 correspond, respectively. All relations for corrections to thermodynamic 

functions will be derived for an arbitrary value of δ.

We will construct a basic chemical model with the atomic partition function 

in the Planck–Larkin approximation given by Eq. (3),  

PLa Σ=Σ . (20) 

In this case, 0=∆Σ in accordance with Eq. (16), and 0=∆Σ because PLΣ

does not depend on density. It follows from formula (2) that 3Γ=∆f , and Eqs. 

(10–15) give the following corrections to thermodynamic functions:  

6Γ=∆p (21) 

2Γ=∆e (22) 

32Γ=∆h (23) 

Γ=∆Iβ (24) 

The treated version of base chemical model is classical in a sense. This 

version uses the results of the Debye theory for the charge energy in fully ionized 

plasma [8]. It is this particular scheme of calculation of corrections for the 

nonideality of free charges in a partially ionized plasma that is suggested in the 

majority of monographs on plasma physics; in so doing, the question of the 

partition function as a rule remains open. According to our approach, it is the 

Planck–Larkin partition function that must be employed. The use of the set of 

corrections (21–24) along with some other partition function is illegitimate, 

because the results obtained using the physical and chemical models will not agree, 

and the thus obtained chemical model will not be basic. We will now examine 

another option of basic chemical model using the NNA for the calculation of 

partition function.  



7

In order to find ∆Σ , we will use the technique described in [1] and based on 

identical transformation of the atomic partition function aΣ ,
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We will substitute 1→kω in the first term of Eq. (25), and this term will 

then transform to the Planck–Larkin partition function; in the second term, we will 

change from summation to integration. As a result, we derive  
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After the integration of Eq. (26) with kω of the form of (19), we derive, for 

an arbitrary value of δ, NNA∆Σ :
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where ( )xΓ - is the gamma function.  

We substitute Eq. (27) into (2) to derive  







ΓΓ−−

Γ=∆
6
1

96
32)

16
61(

3
35

21

61

23 δ
π

δ
π

NNAf . (28) 

In calculating Σ∆ , we take some simplifying assumptions which are 

associated with the fact that the final results will be given in the form of expansion 

with respect to the parameter Γ :
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In writing the approximate equality in Eq. (29), we have taken into account 

the fact that the value of I∆β is proportional to the nonideality parameter Γ and 

that its inclusion will lead to terms of the order of 2Γ and higher in the final 

expressions for Σ∆ . In substituting ∆Σ for aΣ , we ignore the dependence on 

density in the first term of the right-hand part of Eq. (25) [1] and use relation (26) 

for the calculation of ∆Σ . We substitute Eq. (27) into (29) to derive  
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We use the obtained expressions for NNAf∆ and NNA
Σ∆ to derive from Eqs. 

(10–15), for a basic chemical model with the partition function in the NNA,  
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The dependence of corrections (31–34) on the parameter δ makes it 

possible to trace the part played by excited states in the thermodynamics of basic 

chemical models. The NNA exponentially reduces the contribution made to the 

atomic partition function by the excited states whose volume exceeds the volume 

of the Wigner-Seitz cell. By reducing the parameter δ , we cause an increase in the 

number of excited states which make a contribution to the atomic partition 

function. In so doing, as is seen from relations (31–34), all corrections decrease 

and, for some value of δ , even change sign. Because the main contribution to ∆Σ

is that by highly excited states, the value of δ = 2 appears to be most reasonable; 
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this corresponds to the choice of atomic volume equal to the volume of the 

maximal classically accessible region of motion of bound electron [9]. Another 

important corollary of relations (31–34) is the significant difference of obtained 

corrections for the nonideality of free charges of atomic plasma from the results of 

the classical Debye theory (21–24).  

Figures 1–4 give the obtained corrections and the decrease of the ionization 

potential for three basic chemical models treated by us as functions of the 

parameter Γ . Note an important fact that the basic chemical model with the atomic 

partition function in the NNA exhibits a much smaller contribution by the effects 

of free charge interaction to the thermodynamics of partially ionized plasma 

compared to the basic chemical model with the Planck–Larkin partition function. 

The physical reasons for this effect have been discussed in [1]. This result provides 

a theoretical explanation for the experimentally observed “ideal” behavior of 

nonideal plasma. The energy of Coulomb interaction of free charge in partially 

ionized plasma turns out to be significantly lower than the temperature (see Fig. 3), 

although the formally calculated value of the nonideality parameter is high. Figure 

5 illustrates the behavior of the Σ∆ correction which has the physical meaning of 

the fraction of volume taken up by atoms of opposite sign. Indeed, 

kkeik vn ωω −=∂∂ where 34 3
kk rv π= is the volume of atom in the state k .

3. Comparison of calculation and experimental results. Problem of 

consistency between the caloric and thermal equations of state for nonideal 

atomic plasma. We will treat the results of shock-wave experiments performed in 

cesium, argon, and xenon plasma and described by Fortov and Yakubov [5]. First 

of all, we will treat the isochore of cesium for a specific volume gcmv /200 3= .

Figure 6 gives comparison of experimental data (shaded region) and calculated 

curves for three basic chemical models with different partition functions, namely, 

those in the NNA and in the PLA. One can see that the maximal deviation from 

experiment is exhibited by the results of calculation by the basic chemical model 

with the partition function in the PLA and with Debye corrections for free charge 
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interaction. By the way, this inference was made previously [5]. Agreement with 

experiment is improved significantly when the NNA with 2=δ is used. Note 

that it is very difficult to attain even a slight shift of the calculated curve toward the 

experimental region in the case of selected coordinates. 

A large body of experimental data have been obtained by now in shock-

wave experiments performed in plasma of cesium and inert gases, where four 

thermodynamic parameters could be measured, namely, enthalpy H, pressure P,

volume V, and temperature T. In comparing various theories with experiment, a 

certain inconsistency was observed when using the thermal (P, V, T) and caloric 

(for example P, V, H) equations of state [5]. Reaching agreement between theory 

and experiment within some model when using the thermal equation of state leads 

to difference between theory and experiment when using the caloric equation of 

state derived within the same model. It was only the approximation of ideal-gas 

mixture of electrons, ions, and atoms that produced reasonable agreement between 

experiment and the results of calculations by the thermal and caloric equations of 

state. One can say that it was this inference that turned out to be the most 

unexpected result of experiments in [5] performed for plasma with significant 

Coulomb nonideality. The results (26–29) obtained by us for a basic chemical 

model with the partition function in the NNA provide a theoretical explanation for 

this inference. The consistent inclusion of the contribution by highly excited bound 

states, defined by ∆Σ according to Eq. (16), results in a marked decrease in the 

magnitude of corrections for free charge interaction (2). In addition, one must take 

into account the density derivatives of the atomic partition function according to 

Eq. (17), as was emphasized in [10]. This problem was discussed in more detail in 

[11]. The term Σ∆ , though small, causes a marked reduction of the effects of 

Coulomb nonideality (10, 13, 15).  

Ten sets of P, V, H, T experimental data for cesium and five sets each for 

argon and xenon were selected for comparison with experiment. These data are 

given in the monograph [5]. All calculations were performed by the standard 

scheme: two measured quantities are used to determine the third one for which 
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experimental data are also available. The calculations were performed within two 

basic chemical models, namely, those using the Planck–Larkin partition function 

and the NNA with 2=δ .

Given in Figs. 7–10 are the results of comparison of theory and experiment 

for cesium (Figs. 7a–10a), argon (Figs. 7b–10b), and xenon (Figs. 7c–10c) plasma 

in the form of dependence of the ratio of quantities calculated within some or other 

model on the parameter Γ . In Fig. 7, the temperature is obtained by measured 

values of enthalpy H and pressure P . In Figs. 8 and 9, the volume is calculated 

by H , P and TP, , respectively. In Fig. 10, the enthalpy is the calculated value, 

and the temperature and pressure are the initial values. Therefore, both the thermal 

and caloric equations of state are used. The use of the basic chemical model with 

the Planck–Larkin partition function and Debye corrections, especially in the case 

of argon and xenon plasma, demonstrates poor agreement with experiment. For 

some experimental points in the case of argon plasma (one point) and xenon 

plasma (four points), the calculation within this option of basic chemical model 

cannot be performed at all, because these points fall into the region of instability of 

the model. This instability is associated with the change of sign of the derivative 

ea nn ∂∂ , which gives grounds for predicting the existence of phase transition in 

plasma. In Figs. 7–10, the vertical dotted arrows indicate the transition to the 

instability region. The basic chemical model in the NNA enables one to perform 

calculations for the entire array of experimental points. Figures 7–10 give the 

calculation results only for the option of NNA with 2=δ , which was selected 

from comparison of theory with the experimentally obtained isochore of cesium 

plasma for gcmv /200 3= . During transition from one basic chemical model to 

another, the plasma composition changes, because the calculation of this 

composition involves the use of different partition functions and different 

expressions for reduction of the ionization potential (24) and (34). The basic 

chemical model with the Planck–Larkin partition function gives higher values of 

the free electron concentration compared to the basic chemical model with the 
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partition function in the NNA. This fact results in different values of the parameter 

of Coulomb nonideality Γ for one and the same set of initial thermodynamic 

parameters. One can see in Figs. 7–10 that the calculated points corresponding to 

the partition function in the NNA lie to the left of the points obtained using the 

Planck–Larkin partition function, because these former points have lower values of 

the parameter Γ corresponding to them. The basic chemical model with the 

partition function in the NNA is adequately consistent with experiment in the 

entire experimental range, especially for the case of cesium plasma. A systematic 

difference between theory and experiment for xenon plasma observed in some 

options (Figs. 8c–10c) is possibly associated with the effect of interatomic 

interaction.  

 

CONCLUSIONS 

A new concept of basic chemical models of nonideal atomic plasma has 

been introduced. Basic chemical models provide for consistency of the theoretical 

results between the chemical and physical models. Two options of basic chemical 

model have been examined, those using the partition function in the PLA and in 

the NNA. A consistent use of the NNA to determine the atomic partition function 

makes it possible to explain the experimentally observed effect of significant 

overestimation of the contribution made by Coulomb interaction to the 

thermodynamic functions of partially ionized plasma, as given by the Debye theory 

developed for fully ionized plasma. Comparison has been made of the theoretical 

and experimental results. Within the basic chemical model with the atomic 

partition function calculated in the NNA, one can reach adequate agreement with 

the experimental data using both the thermal and caloric equations of state.  
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Fig. 1. Corrections to free energy f∆ as a function of the plasma nonideality parameter 

Γ for basic chemical models with different atomic partition functions: dotted line, PLA; dot-

and-dash line, NNA, 1=δ ; solid curve, NNA, 2=δ .
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Fig. 2. Corrections to pressure p∆ . Designations are as in Fig. 1.  
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Fig. 3. Corrections to free charge energy e∆ . Designations are as in Fig. 1.  

 

0,0 0,5 1,0 1,5 2,0
-2

-1

0

1

2
β∆I

Γ

Fig. 4. Decrease in the ionization potential, related to temperature, I∆β .

Designations are as in Fig. 1.  
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Fig. 5. The fraction of unit volume Σ∆ taken up by atoms with opposite sign.  
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Fig. 6. Isochore of cesium plasma, V=0.2 kg/m3. Shaded region – experimental data, 

curves – calculation (designations are as in Fig. 1). [H-2.5PV: kJ/kg; PV: MPa/kg ]  
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Fig. 7. The ratio of the calculated value of temperature to the experimentally obtained value (by the experimental data for H and P ): a -
cesium plasma, b - argon plasma, c - xenon plasma.
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Fig. 8. The ratio of the calculated value of plasma volume to the experimentally obtained value (by the experimental data for H and P ): a -
cesium plasma, b - argon plasma, c - xenon plasma.
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Fig. 9. The ratio of the calculated value of plasma volume to the experimentally obtained value (by the experimental data for P and T ): a - cesium plasma,
b - argon plasma, c - xenon plasma.
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Fig. 10. The ratio of the calculated value of enthalpy to the experimentally obtained value (by the experimental data for P and T ): a - cesium plasma, b -
argon plasma, c - xenon plasma.
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